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Motivation

Performance change of MF-BPR: Impact of applying adversarial noise vs. 

random noises w.r.t. noise strength (ϵ) on the embedding layer.
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Small adversarial perturbations on images (noise level ϵ = 0.007) change the

ranking list significantly. Note: human cannot perceive the perturbations.

Method: Adversarial Personalized Ranking

Recommender systems are not robust and are 
vulnerable to adversarial attacks (noises). 

- Example 1, Vulnerability of a multimedia recommender system:

- Example 2, Vulnerability of a general recommender system:

Full paper accepted by SIGIR 2018, He et al. Adversarial Personalized Ranking for Recommendation

We propose a general learning framework, which leads to more robust 
model by adding adaptive adversarial perturbations during training. 

Original BPR loss Adversary Loss (regularizer)

and

Adversarial Perturbations 
(adaptive: depends on 
the current model) 

Aims to maximize 
the original loss 
within a magnitude

Current model 
parameters 

where 

Bayesian Personalized 
Ranking loss 
[Rendle, UAI’09]

Pairwise training 
examples

Margin between 
positive and negative 
predictions

Overall formulation is a mini-max game: 

where the learning of model parameters (Θ) is the minimizing player, and the 
learning of perturbations (Δ) is the maximizing player. 

ε = 0.5 ε = 1.0 ε = 2.0

Dataset BPR APR BPR APR BPR APR

Yelp -22.1% -4.7% -42.7% -12.5% -63.8% -31.0%

Pinterest -9.5% -2.6% -25.1% -7.2% -55.7% -23.4%

Gowalla -26.3% -2.9% -53.0% -13.2% -78.0% -29.2%

Step 1. Constructing Adversarial Perturbations. Suppose the objective function (to 
be maximized) around Δis a linear function (cf. the fast gradient method 
[Goodfellowet al, ICLR’15]), the adversarial perturbations are updated as:

Learning Algorithm for APR

We apply alternating optimization for APR. In each iteration, with training 
sample (u, i, j) or mini-batch, the parameters are updated in two steps.

Step 2. Learning Model Parameters. The parameters are updated with standard SGD 
on APRobjectivefunction.

Robustness of AMF
APR makes the model become less sensitive to adversarial
perturbations. The table compares the relative decrease in
NDCG@100 of MF trained by BPR and APR.

Performance of AMF

Yelp Pinterest Gowalla

HR NDCG HR NDCG HR NDCG

ItemPop 0.0742 0.0169 0.0485 0.0116 0.1560 0.0428

MF-BPR 0.1721 0.0420 0.3403 0.0886 0.5072 0.1878

CDAE 0.1733 0.0405 0.3495 0.0873 0.5483 0.2007

IRGAN 0.1765 0.0465 0.3363 0.0904 0.5180 0.2019

NeuMF 0.1817 0.0445 0.3526 0.0925 0.5642 0.2138

AMF 0.1885 0.0465 0.3595 0.0938 0.5763 0.2212

Top-K recommendation evaluation (K=100)
ÅComparingwith the baselines,AMF achieves the best 

results in most cases.
ÅAMF exhibits an average improvement of 2.9% over 

NeuMF, an expressive deep learning model. However, AMF 
is just a shallow MF model with fewer parameters.

ÅAMF betters IRGAN by 5.9% on average, and AMF is more 
efficient and much easier to train than IRGAN.

APR is a generic learning algorithm and can be applied to any predictive 
model that is differentiable. We apply it on Matrix Factorization (MF) model 
and the perturbations are enforced on embedding parameters. 

AMF: An Example of APR on MF

Experiment results:
When MF-BPR converges, 
further training it with 
APR (i.e., AMF) leads to 
significant improvements:  


